If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20d^2=245
We move all terms to the left:
20d^2-(245)=0
a = 20; b = 0; c = -245;
Δ = b2-4ac
Δ = 02-4·20·(-245)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*20}=\frac{-140}{40} =-3+1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*20}=\frac{140}{40} =3+1/2 $
| 12x=-8=40 | | -5(x+1)=4(x+10)= | | 19–2m=1 | | -3x+5x+6=-2 | | -15(3-p)=5(2p-21) | | 36+t=55 | | 18q^2+84q+98=0 | | x/5+1/3=4/3 | | 4.3t-2.1t-2.3=8.7 | | -3(2y-1)+6=-15 | | 26=8n-10-2n | | 24y^2-78y-72=0 | | 9h+4=67h= | | 25x=1040 | | 15+6m=45 | | 58j=-28-4j^2 | | 2(2b-5b)-9=-3 | | 2/3x-1=9-1/6x= | | 12=3f | | 40k^2-392k-80=0 | | x+12=35-(x+12) | | 1+5w+5-7w=22 | | 9=1/3m+15 | | 180=3x-82+166 | | 6h^2+68h+22=0 | | 5x+2+10x-3+7x-11+8x-19+13x-31=540 | | 1-8n=-7n | | 3x+47/5=28 | | 10(w+1)=90 | | 54+8p=6(p-4) | | 32m^2-80m+50=0 | | -1/8z+3=-5 |